# Vlasov Simulation Methods for plasmas and beams II

Eric Sonnendrücker
IRMA, Université Louis Pasteur
Strasbourg, France
Co-workers: F. Filbet, M. Gutnic, I. Paun,
N. Besse, J.-L. Lemaire (CEA)

Berkeley, July 31, 2002

#### **Outline**

- The axisymmetric Vlasov equation.
- Semi-Lagrangian methods on unstructured meshes.
- An adaptive method based on a wavelet decomposition.

#### Last week

- Overview of Vlasov method.
- In particular: The semi-Lagrangian method (forward and backward).
- Applications for beam propagation in uniform and periodic focusing channels.

# The backward semi-Lagrangian Method

- f conserved along characteristics
- Find the origin of the characteristics ending at the grid points
- Interpolate old value at origin of characteristics from known grid values → High order interpolation needed



## The axisymmetric Vlasov equation

The distribution function  $f(r, v_r, v_\theta, t)$  is given by

$$\frac{\partial f}{\partial t} + v_r \frac{\partial f}{\partial r} + v_z \frac{\partial f}{\partial z} + \left(\frac{qE_s r}{m} + \frac{qB_z}{m}v_\theta + \frac{v_\theta^2}{r}\right) \frac{\partial f}{\partial v_r} - \left(\frac{qB_z}{m}v_r + \frac{v_\theta v_r}{r}\right) \frac{\partial f}{\partial v_\theta} + \frac{qE_s z}{m} \frac{\partial f}{\partial v_z} = 0,$$

where  $B_z$  is external and  $E_s$  given by Poisson's equation

$$\nabla \cdot E = \rho(t, r)/\varepsilon_0, \quad \rho(t, r) = q \int_{\mathbb{R}^3} f \, dv.$$

## Invariants of the Vlasov equation

In order to reduce the dimension of the problem we use the invariance of the canonical angular momentum

$$P(r, v_{\theta}) = mrv_{\theta} + \frac{r^2}{2}qB_z.$$

Denoting by  $I=\frac{P}{m}$  and making the change of variable  $(r,v_r,v_{\theta}) \to (r,v_r,I)$  with  $v_{\theta}=\frac{I}{r}-\frac{1}{2}\frac{q\,B_z}{m}r,$  we get

$$\frac{\partial f}{\partial t} + v_r \frac{\partial f}{\partial r} + \left(\frac{q}{m} E_s(t, r) + \frac{I^2}{r^3} - \frac{1}{4} \left(\frac{q B_z}{m}\right)^2 r\right) \frac{\partial f}{\partial v_r} = 0.$$

# Discretization of the axisymmetric Vlasov equation

ullet Invariant I is a parameter but needs careful discretization. Characteric curves of the form

$$\frac{\omega^2}{2}r^2 + v_r^2 + \frac{I^2}{r^2} = const.$$

- $\rightarrow$  necessary to control I/r hence I is discretized according to  $I=\omega\,r^2,$  in vicinity of axis.
- Difficulty near r=0 because of  $I^2/R^3$  term.

- Time-Splitting scheme:
  - \* Advection in  $r: \frac{\partial f^*}{\partial t} + v_r \frac{\partial f^*}{\partial r} = 0$ ,
  - $\star$  Advection in  $v_r$ :

$$\frac{\partial f^{**}}{\partial t} + \left(\frac{q}{m}E_s(t,r) + \frac{I^2}{r^3} - \frac{1}{4}\left(\frac{qB_z}{m}\right)^2r\right)\frac{\partial f^{**}}{\partial v_r} = 0.$$

 Cubic Hermite interpolation with numerical computation of derivatives by a fourth order finite difference scheme

$$\partial_r f_i^n = \frac{1}{12\Lambda r} \left[ 8 \left[ f_{i+1}^n - f_{i-1}^n \right] - \left[ f_{i+2}^n - f_{i-2}^n \right] \right].$$

#### **Parallelization**

- Straightforward using the Invariant.
- ullet Only communications are for gathering of ho.

| # CPU | 2D Cartesian PFC | Axisymmetric |
|-------|------------------|--------------|
| 4     | 178 min          | 59 min       |
| 8     | 89 min           | 27 min       |

Table 1: Computational time for a  $2D \times 2D$  cartesian and axisymmetric solvers.

# The semi-Lagrangian method on unstructured grids

- Give more flexibility to mesh.
- ullet Operator splitting used between x and v advections so that advection is explicit.
- Interpolation in full phase space necessary at each step.
- Interpolation done using Finite Element basis functions
   → many possibilities.
- Computation of  $\rho(x)$  needs interpolations.

#### Properties of scheme

- High order Lagrange seems unstable due to oscillations on edge of elements.
- Hermite type elements with CIP type method seems the best choice in this case.
- Positiveness and conservativeness can be ensured by switching between high order and first order interpolation.

## Adaptive semi-Lagrangian method

- We want to optimize the number of grid points for a given numerical error.
- Multi-resolution techniques using interpolating wavelets are well suited to determine where refinement is needed.
- Principle of the method
  - \* Use different levels of meshes
  - ★ At one given level, decompose gridfunction into gridfunction at coarser level + details.



Grid  $G_j$ , grid points  $x_k^j = k \, 2^j$ , level j



Grid  $G_{j+1}$ , grid points  $x_k^{j+1} = k \, 2^{j+1}$ , level j+1



Grid  $G_{j+2}$ , grid points  $x_k^{j+2}=k\,2^{j+2}$ , level j+2

## The wavelet decomposition

- Idea: Decompose more precise sample, i.e. values of f at grid points of  $G_{j+1}$  (denoted by  $c_{i+1}$ ) into smaller sample i.e. values of f at grid points of  $G_j$  (denoted by  $c_i$ ) + details (denoted by  $d_i$ ).
- Details contain difference between exact value and value predicted using interpolation operator.

 $c_{2k}^{j+1}=c_k^j$  same value at coarse mesh points

$$d_k^j = c_{2k+1}^{j+1} - P_{2N+1}(x_{2k+1}^{j+1}).$$

## **Prediction operator**

Predict values at unknown positions of finer level using lagrange interpolating polynomial on coarser level.

## **Prediction operator**

Predict values at unknown positions of finer level using lagrange interpolating polynomial on coarser level.



## **Prediction operator**

Predict values at unknown positions of finer level using lagrange interpolating polynomial on coarser level.



$$d_k^j = c_{2k+1}^{j+1} - P_{2N+1}(oldsymbol{x_{2k+1}^{j+1}}) ext{ and } c_{2k}^{j+1} = c_k^j$$

# Adaptivity and semi-Lagrangian method

- Semi-Lagrangian method based on polynomial interpolation.
- Main idea for adaptivity: details are small where interpolation does a good job.
- In adaptive method, use wavelet decomposition to eliminate grid points corresponding to small details.
- No loss of information due to wavelet decomposition.

# **Scaling function**





#### Wavelet interpolation

#### Interpolation formula

$$f^{*}(x,v) = \sum_{k_{1},k_{2}} \left( c_{k_{1},k_{2}}^{j_{0}} \varphi_{k_{1}}^{j_{0}}(x) \varphi_{k_{2}}^{j_{0}}(v) + \sum_{j_{0}}^{j_{1}-1} \left( d_{k_{1},k_{2}}^{row,j} \psi_{k_{1}}^{j+1}(x) \varphi_{k_{2}}^{j}(v) + d_{k_{1},k_{2}}^{col,j} \varphi_{k_{1}}^{j}(x) \psi_{k_{2}}^{j}(v) + d_{k_{1},k_{2}}^{mid,j} \varphi_{k_{1}}^{j+1}(x) \psi_{k_{2}}^{j+1}(v) \right) \right)$$
(1)

## The Algorithm for the Vlasov Problem...

- Initialisation: decomposition and compression of  $f_0$ .
- Prediction in x of the grid G (for important details) at the next split time step following the characteristics forward. Retain points at level just finer.
- Construction of  $\hat{G}$ : grid where we have to compute values of  $f^*$  in order to compute its wavelet transform.

#### ... The Algorithm for the Vlasov Problem...

- Advection-interpolation in x: follow the characteristics backwards in x and interpolate using wavelet decomposition (1):  $f^*(x,v) = f^n(x-v\,\Delta t,v)$
- Wavelet transform of  $f^*$ : compute the  $c_k$  and  $d_k$  coefficients at the points of  $\tilde{G}$ .
- Computation of electric field from Poisson.
- Prediction in v: as for x.

#### ... The Algorithm for the Vlasov Problem

- Construction of  $\hat{G}$ : grid where we have to compute values of  $f^{n+1}$  in order to compute its wavelet transform.
- Advection-interpolation in v: as for x  $f^{n+1}(x,v) = f^*(x,v-E(x)\Delta t)$  using wavelet decomposition.
- Wavelet transform of  $f^{n+1}$ : compute the  $c_k$  and  $d_k$  coefficients at the points of  $\tilde{G}$ .
- Compression of  $f^{n+1}$ .

#### Numerical results







## A few papers and web pages

- Nicolas Besse: Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space http://www-irma.u-strasbg.fr/irma/publications/2002/02028.shtml
- Francis Filbet, Jean-Louis Lemaire, Eric Sonnendrucker:
   Direct axisymmetric Vlasov simulations of space charge dominated beams
  - http://www-irma.u-strasbg.fr/irma/publications/2002/02009.shtml
- Francis Filbet, Eric Sonnendrucker: Comparison of Eulerian Vlasov Solvers

http://www-irma.u-strasbg.fr/irma/publications/2001/01035.shtml

- Francis Filbet, Eric Sonnendrucker, Pierre Bertrand: Conservative numerical schemes for the Vlasov equation.
   J. Comp. Phys. Volume 172, Number 1 pp. 166-188 (2001).
- The VADOR code:

http://www-irma.u-strasbg.fr/~filbet

#### **Conclusions**

- Axisymmetric problems can be brought back to 4D phase space or 2D slice which makes them tractable thanks to use of invariance of angular momentum.
- Unstructured meshes feasible but more complicated and fairly slower.
- Adaptive method looks promising in 2D phase space.
   Implementation more complex due to adaptive mesh structure. Needs to be extended to higher dimensions.